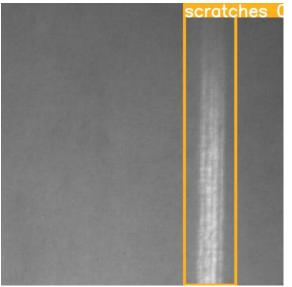
Image-Object-Detection-YOLOv8-PyTorch-GPL-Jupyter

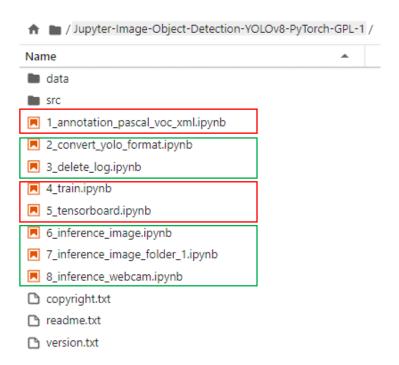

Ultralytics YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model developed by Ultralytics.

It builds on the previous successful version of YOLO, introducing new features and improvements that further enhance its performance and flexibility.

Version 20230223

Applications

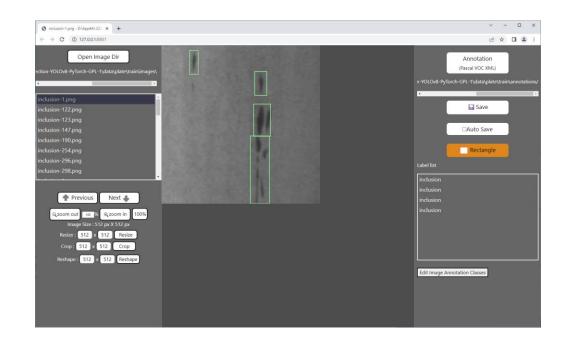
• The YOLOv8 solution can be applied to factory defect detection, medical image analysis, biological image analysis, industrial safety image analysis, mask image analysis, etc.



How to use

The main process is:

Annotate images -> Prepare files for training -> Training -> Inference



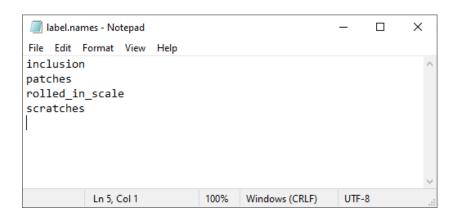
1_annotation_pascal_voc_xml.ipynb

Open the webpage for image annotation.

ipynb parameter:

- "port" is the port used by the webpage. If the port is occupied by the user, please change another port value by yourself.
- "dataset" is the dataset name
- "label_folder" is the image of the train folder, it can also be changed to "val" to label the image of the val folder.

See Annotation.pdf for how to use annotation pages.

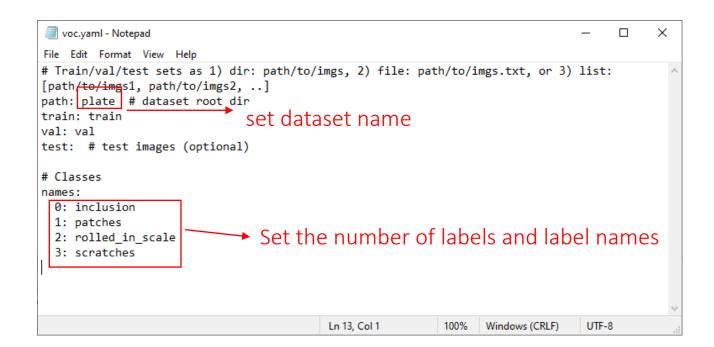

2_convert_yolo_format.ipynb

Convert the voc xml label file to the yolo format. Before running, please confirm label.names under the label_file path in #parameters and whether the content filled in the category is correct.

supplement:

The content of label.names is the category name without background.

If there are more than two category names, represent each category name with a line break.



3_delete_log.ipynb

Delete the log files left over from previous training.

Set training related files

Confirm the content of the voc.yaml file in the dataset, such as the name of the dataset, the number of categories, and the name.

4_train.ipynb

Start training.

ipynb parameter:

- dataset is the dataset name.
- weights_file is the pretrained model path used.
- devices is the GPU id used.
- epochs is the number of training epochs.

run command()

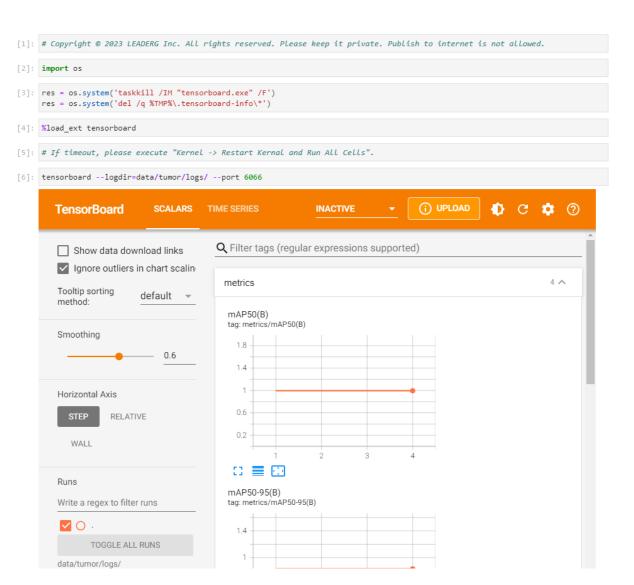
torchvision\io\image.py:13: UserWarning: Failed to load image Python extension:

torch_jit_internal.py:751: UserWarning: Unable to retrieve source for @torch.jit._overload function: <function _DenseLayer.forward at 0x0000028334082790>.

 $warnings.warn(f"Unable\ to\ retrieve\ source\ for\ @torch.jit._overload\ function:\ \{func\}.")$

torch_jit_internal.py:751: UserWarning: Unable to retrieve source for @torch.jit._overload function: <function _DenseLayer.forward at 0x0000028334096880>.

warnings.warn(f"Unable to retrieve source for @torch.jit._overload function: {func}.")


Ultralytics YOLOv8.0.6 Python-3.9.12 torch-1.12.0+cu113 CUDA:0 (NVIDIA TITAN RTX, 24576MiB)

yolo\engine\trainer: task=detect, modestrain, model=data/tumor/model/yolow8x.pt, data=data/tumor/voc.yaml, epochs=1000, patience=5
0, batch=16, imgsz=512, save=True, cache=False, device=0, workers=4, project=data/tumor, name=model, exist_ok=True, pretrained=Tru
e, optimizer=500, verbose=False, seed=0, deterministic=True, single_cls=False, image_weights=False, rect=False, cos_Ir=False, close_mosaic=10, resume=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, save_json=False, save_hybrid=False, conf=false, save_ronp=False, nu=0.7, max_det=300, half=False, data=5.0 false, fal

-1 1 2320 ultralvtics.nn.modules.Conv [3, 80, 3, 2] 115520 ultralytics.nn.modules.Conv [80, 160, 3, 2] [160, 160, 3, True] 436800 ultralytics.nn.modules.C2f 461440 ultralvtics.nn.modules.Conv [160, 320, 3, 2] 3281920 ultralytics.nn.modules.C2f [320, 320, 6, True] [320, 640, 3, 2] -1 1 1844480 ultralytics.nn.modules.Conv [640, 640, 6, True] -1 6 13117440 ultralytics.nn.modules.C2f -1 1 3687680 ultralytics.nn.modules.Conv [640, 640, 3, 2] 6969600 ultralytics.nn.modules.C2f [640, 640, 3, True] -1 1 1025920 ultralytics.nn.modules.SPPF [640, 640, 5] 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 0 ultralytics.nn.modules.Concat 7379200 ultralytics.nn.modules.C2f [1280, 640, 3] 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 0 ultralvtics.nn.modules.Concat 1948800 ultralytics.nn.modules.C2f [960, 320, 3] 922240 ultralytics.nn.modules.Conv [320, 320, 3, 2] 0 ultralytics.nn.modules.Concat 7174400 ultralytics.nn.modules.C2f [960, 640, 3] -1 1 3687680 ultralytics.nn.modules.Conv [640, 640, 3, 2] 0 ultralytics.nn.modules.Concat 7379200 ultralytics.nn.modules.C2f [1280, 640, 3] [15, 18, 21] 1 8718931 ultralytics.nn.modules.Detect [1, [320, 640, 640]] Model summary: 365 layers, 68153571 parameters, 68153555 gradients, 258.1 GFLOPS

5_tensorboard.ipynb

You can view the training loss curve and other related information through TensorBoard.

6_inference_start.ipynb

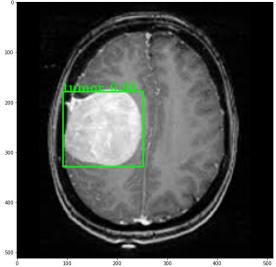
Start the inference server.

ipynb parameter:

- dataset is the dataset name.
- weights_file is the inference model path.

```
[1]: # Copyright @ 2023 LEADERG Inc. All rights reserved. Please keep it private. Publish to internet is not allowed.
[2]: import subprocess
[3]: dataset = "tumor"
     source = "data/%s/test/images/tumor-1.png" %(dataset)
     image_size = 512
     weights file = "data/%s/model/best.pt" %(dataset)
     device = "0" # 0, 1, 2, ... for Nvidia GPU or cpu for CPU
     threshold = '0.5'
[4]: cmd = '"bin/inference.exe" --port 8801 --model_file "' + weights_file + '" --threshold ' + threshold + " --img_size " + str(image_s
[*]: subprocess.run(cmd, creationflags = subprocess.CREATE_NEW_CONSOLE)
                                                                                                         □ ↑ ↓ 占 〒 🗎
   D:\App4AI-2222\sdk\Image-YOLOv8-Jupyter\bin\inference.exe
                                                                                                                       torchvision\io\image.py:13: UserWarning: Failed to load image Python extension
    orch\_jit_internal.py:751: UserWarning: Unable to retrieve source for @torch.jit._overload function: <function _DenseLa
    warnings.warn(f"Unable to retrieve source for @torch.jit._overload function: {func}.")
    orch∖ jit internal.py:751: UserWarning: Unable to retrieve source for @torch.jit. overload function: <function DenseLa
    warnings.warn(f"Unable to retrieve source for @torch.jit._overload function: {func}.")
    ltralytics YOLOv8.0.6 Python-3.9.12 torch-1.12.0+cu113 CUDA:0 (NVIDIA TITAN RTX, 24576MiB)
    odel summary: 268 layers, 68124531 parameters, 0 gradients, 257.4 GFLOPs
     ----- Running on http://127.0.0.1:8801 -----
    Press CTRL+C to quit)
```

7_inference.ipynb


Send the image to the server for inference through curl and draw the result image after receiving the returned inference result.

ipynb parameter:

- source is the inferred image path.
- port is the server port.

```
if os.path.exists(source):
    img = cv2.imread(source)

for res in result_json:
    if 'object' in res:
    for obj in res['object']:
        cv2.rectangle(img, (int(obj['x']), int(obj['y']), int(obj['width']), int(obj['height'])), (0, 255, 0), 2)
        text = obj['type'] + " %.2f"%(float(obj['score']))
        cv2.putText(img, text, (int(obj['x']), int(obj['y']) - 1), cv2.FONT_HERSHEY_TRIPLEX, 0.75, (0, 255, 0), 1, cv2.LINE
    image = cv2.cvtColor(img, cv2.ColoR_BGR2RGB)
    plt.imshow(image)
    plt.imshow(image)
    plt.show()
```


8_inference_stop.ipynb

Shut down the inference server.

```
[1]: # Copyright @ 2023 LEADERG Inc. All rights reserved. Please keep it private. Publish to internet is not allowed.
[2]: import pycurl
[3]: url = "http://127.0.0.1:8801/api/stop"
         timeOut = 30
         curl = pycurl.Curl()
         curl.setopt(pycurl.HTTPHEADER, ['Expect:', 'Keep-Alive: 300', 'Connection: Keep-Alive'])
         curl.setopt(pycurl.VERBOSE, 1)
         curl.setopt(pycurl.URL, url)
         curl.setopt(pycurl.TIMEOUT, timeOut)
         curl.setopt(pycurl.CONNECTTIMEOUT, timeOut)
         curl.setopt(pycurl.USERAGENT, "Mozilla/5.0")
         curl.perform()
         curl.close()
     except Exception as e:
         print(e)
     (52, 'Empty reply from server')
```

Reference

- Please refer to the readme.txt in the SDK folder.
- LEADERG AppForAI: https://www.leaderg.com/appforai-windows
- Copyright © LEADERG INC. All rights reserved.