YOLOv8Classification

Ultralytics YOLOv8 is a cutting-edge state-of-the-art (SOTA) model developed by Ultralytics. Improve and optimize on the basis of the previous successful YOLO.

YOLOV8Classification uses the classification function in YOLOv8.

Version 20230223

Applications

YOLOv8Classification can be applied to factory defect classification, medical image classification, biological image classification, mask image classification, etc.

How to use

The main process is:

Select dataset -> preprocessing (prepare

images, set training parameters) -> training

-> inference images

C LEADERG - YOLOv8Classification - Version 1							×		
Dataset APP Document SDK Document select dataset chest New									
Prepare	Prepare								
1. create ImageNet yaml									
view ImageN	et.yaml	View trai	in folder		view val folder				
Train ———									
2. train (GPU)	2. trair	(CPU)						
Batch Size	8	Image Size	512						
Workers	2	Epochs	300						
GPU ID	0	(0, 1, 2, for N	vidia GPU)		tensorboa	rd			
Pretrained Model	retrained Model data/chest/model/yolov8x-cls.pt Select								
Inference									
3. inference (GPU)		3. inference (CPU)							
4. inference folder (GPU) 4. inference folder (CPU)									
Inference Model		data/chest/mod		Select	t				
GPU ID		0		(0,	1, 2, for	Nvidia G	PU)		

Select dataset

Select the dataset for training or inference.

- The "Folder" icon button next to the pulldown menu can open the data folder location, which is convenient for users to confirm and modify.
- If you want to create a new dataset by yourself, please press the "New" button, enter the dataset name in the pop-up window (only English and numbers can be used as the dataset name), and press "OK" to complete the creation, that is The name you just entered can be found in the pull-down menu.

C LEADERG - YOLOv8Cla	ssification - Versio	" elect \	liew	and I	New	dataset [×]	
Dataset	est 🚽	New New		APP Doo	cument	SDK Document	
Prepare —							
1. create Imag	geNet yaml						
view ImageN	et.yaml	View train folder			view val folder		
Train							
2. train (GPU)	2. trair	n (CPU)				
Batch Size	8	Image Size	512				
Workers	2	Epochs	300				
GPU ID	0	(0, 1, 2, for N	lvidia GPU)		ten	sorboard	
Pretrained Model	data/chest/mod	el/yolov8x-cls.pt			Select		
Inference —							
3. inference (GPU)		3. inference (CPU)					
4. inference fo	older (GPU)	4. inference folder (CPU)					
Inference Model		data/chest/model/best.pt				Select	
GPU ID	0 (0, 1, 2, fo				for Nvidia GPU)		

Prepare images

- After pressing the "folder" icon button, click the name of the dataset to be used, and put the images you want to train and infer in the images folder of the train, val, and test folders.
- For images placed in the train and val folders, please create a folder with the name according to the image category and then place the image in that category.
- Please use [label]-[sn].png file format for training, validation and test image. For example: "inclusion-1.png", "inclusion-2.png".
- It is recommended to zoom or crop the train and val image files to a square image of approximately 512 x 512 size.

1.create ImageNet yaml

Once the image is ready, you can press a button to generate ImageNet.yaml.

You can press [view ImageNet.yaml] to confirm the content of the ImageNet.yaml file, such as the name of the dataset, the number of categories, and the name.

train (GPU) train (CPU)

Start training.

Note:

Pretrained Model is the pretrained model path used.

Epochs is the number of training epochs.

C LEADERG - YOLOv8Classification - Version 1		-								
Dataset	APP D	Document SD	K Document							
Prepare										
1. create ImageNet yaml	1	D:\App4AI-222	2\app\YOLOv80	lassification-1	bin\yolov8classif	fication\train.exe			- 🗆	×
view ImageNet.yaml	View train folder	Epoch 2/300	GPU_mem 3.51G classes all	loss 0.07244 top1_acc 0.5	Instances 4 top5_acc: 1	Size 512: 100 100%	6 3/3 [00:00<00:00, 1/1 [00:00<00:00, 30.30it/s]	9.46it/s]		í
2. train (GPU)	2. train (CPU)	Epoch 3/300	GPU_mem 3.51G classes all	loss 0.06676 top1_acc 0.5	Instances 4 top5_acc: 1	Size 512: 100 100%	<pre>6 3/3 [00:00<00:00, 1/1 [00:00<00:00, 24.39it/s]</pre>	9.90it/s]		
Batch Size 8 Ima Workers 2 Epo GPU ID 0 (0, 1, 1)	ge Size 512 chs 300 , 2, for Nvidia GPU)	Epoch 4/300	GPU_mem 3.51G classes all	loss 0.06513 top1_acc 0.5	Instances 4 top5_acc: 1	Size 512: 100 100%	<pre>% 3/3 [00:00<00:00, 1/1 [00:00<00:00, 31.23it/s]</pre>	9.29it/s]		
Pretrained Model data/chest/model/yol	lov8x-cls.pt	Epoch 5/300	GPU_mem 3.51G classes all	loss 0.05084 top1_acc 0.5	Instances 4 top5_acc: 1	Size 512: 100 100%	1/1 [00:00<00:00, 31.24it/s]	8.98it/s]		
3. inference (GPU)	3. inference (CPU)	Epoch 6/300	GPU_mem 3.51G classes	loss 0.04096 top1_acc	Instances 4 top5_acc:	Size 512: 100 100%	<pre>%</pre>	10.10it/s]		
4. inference folder (GPU) 4.	inference folder (C		all	0.5						
Inference Model data GPU ID 0	a/chest/model/best.pt	Epoch 7/300	GPU_mem 3.51G classes all	loss 0.03563 top1_acc 0.5	Instances 4 top5_acc: 1	Size 512: 100 100%	<pre>% 3/3 [00:00<00:00, 1/1 [00:00<00:00, 32.26it/s]</pre>	9.71it/s]		

3. inference (GPU)3. inference (CPU)

Infer a single image.

Choose the Inference Model yourself.

4. inference folder (GPU)4. inference folder (CPU)

Infer all images in the folder.

Choose the Inference Model yourself.

Image results are stored in the "inference-XXX" folder.

EADERG - YOLOv8Classification - Version 1	D:\App4AI-2222\app\YOLOv8Classification-1\bin\yolov8classification\predict.exe —	
Dataset	torch∖_jit_internal.py:751: UserWarning: Unable to retrieve source for @torch.jitoverload function: <functio ayer.forward at 0x000001D13E81EE50>.</functio 	n _DenseL ^
select dataset chest 🔄 🖿 🛚	warnings.warn(f"Unable to retrieve source for @torch.jitoverload function: {func}.") torch_jit_internal.py:751: UserWarning: Unable to retrieve source for @torch.jitoverload function: <functio< td=""><td>n _DenseL</td></functio<>	n _DenseL
Prepare	ayer.forward at 0x000001D13E402080). warnings.warnf (^C hunble to retrieve source for βtorch.jit_overload function: (func).") ULtralyLics YOLOV8.8.6 Python-3.9.12 torch-1.12.0+cu113 CUDA:0 (NVIDIA TITAN RTX, 24576MiB) Exerting laware	
1. create ImageNet yaml	russing agers VOLOV&x-Cls summary: 133 layers, 56125762 parameters, θ gradients, 153.8 GFLOPs Underkill Rate: θ(θ.00%), Overkill Rate: θ(θ.00%), Right Rate: 1(100.00%), Total: 1	
Train	image 1/6 D:\App4AI-2222\app\YOLOv8Classification-1\data\chest\test\NORMAL-11.jpg: 512x512 NORMAL 1.00, 20.0ms Underkill Rate: 0(0.00%), Overkill Rate: 0(0.00%), Right Rate: 2(100.00%), Total: 2	
2. train (GPU) 2.	image 2/6 D:\App4AI-2222\app\YOLOv8Classification-1\data\chest\test\NORMAL-12.jpg: 512x512 NORMAL 1.00, 21.0ms Underkill Rate: 0(0.00%), Overkill Rate: 0(0.00%), Right Rate: 3(100.00%), Total: 3	
Batch Size 8 Image S	image 3/6 D:\App4AI-2222\app\YOLOv8Classification-1\data\chest\test\NORMAL-13.jpg: 512x512 NORMAL 1.00, 20.0ms Underkill Rate: θ(θ.θ0%), Overkill Rate: θ(θ.θ0%), Right Rate: 4(100.00%), Total: 4	
Workers 2 Epochs GPU ID 0 (0, 1, 2,)	<pre>image 4/6 D:\App4AI-2222\app\YOLOv8Classification-1\data\chest\test\PNEUMONIA-11.jpg: 512x512 PNEUMONIA 0.96, Underkill Rate: 0(0.00%), Overkill Rate: 0(0.00%), Right Rate: 5(100.00%), Total: 5</pre>	21.0ms
Pretrained Model data/chest/model/yolov8x	image 5/6 D:\App4AI-2222\app\YOLOv8Classification-1\data\chest\test\PNEUMONIA-12.jpg: 512x512 PNEUMONIA 0.93, Underkill Rate: 0(0.00%), Overkill Rate: 0(0.00%), Right Rate: 6(100.00%), Total: 6	22.0ms
Inference	image 6/6 D:\App4AI-2222\app\YOLO+8Classification-1\data\chest\test\PNEUMONIA-13.jpg: 512x512 PNEUMONIA 0.98, Speed: 0.5ms pre-process, 21.0ms inference, 0.0ms postprocess per image at shape (1, 3, 512, 512) Desulte sawait o data\chestlifenomero.202000100120	22.0ms
3. inference (GPU) 3.	Press any key to continue	~
4. inference folder (GPU) 4. infe	erence folder (CPU)	
Inference Model data/che	est/model/best.pt Select	
GPU ID 0	(0, 1, 2, for Nvidia GPU)	

Reference

- Please refer to the readme.txt in the APP folder.
- LEADERG AppForAI: https://www.leaderg.com/appforai-windows
- Copyright © LEADERG INC. All rights reserved.